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A separation turbulent flow has been mathematically simulated on the basis of numerical solution of nonsta-
tionary Navier–Stokes equations for determining the dynamics of viscous interaction of a ring vortex with a
flat screen. The problem was solved for an axisymmetric turbulent flow at Reynolds numbers falling within
the range 105–107. On the basis of the calculation data obtained, the interaction of a ring vortex with a tur-
bulent flow induced on the screen and with the secondary ring vortices was investigated. The data obtained
are in qualitative agreement with the analogous data obtained by other authors with the use of the discrete-
vortex method and the boundary-layer theory as well as with the available experimental and calculation data
obtained for a laminar flow.

Introduction. The most complete computational-theoretical investigations of the problem on the interaction of
a ring vortex with a flat screen under turbulent-flow conditions at large Reynolds numbers were carried out in [1]. The
authors of this work used the discrete-vortex method and the turbulent-boundary layer theory in their investigations.
The nonstationary problem on the movement of a primary ring vortex to a screen and its interaction with the secon-
dary vortices was solved in the nonviscous formulation with the use of the discrete-vortex method, and the parameters
of the secondary ring vortices generated in the process of separation of the turbulent boundary layer induced on the
screen were determined using the integral momentum relation of the theory of a turbulent axisymmetric radial bound-
ary layer. In [2–9], the self-induced movement of a vortex ring to a flat screen was theoretically and experimentally
investigated for an ideal viscous fluid flow at small Reynolds numbers. To this point the interaction of a ring vortex
with a flat screen under the turbulent-flow conditions, to which large Reynolds numbers falling within the range
105–107 correspond, has not been investigated experimentally and theoretically on the basis of numerical solution of
Navier–Stokes equations.

Formulation of the Problem. The problem on the viscous interaction of a ring solid vortex with a flat solid
screen is solved numerally. A separation turbulent flow, giving an idea of the dynamics of the viscous interaction of
a ring vortex with a turbulent near-wall flow generated on a flat solid screen, is mathematically simulated on the basis
of solution of nonstationary Reynolds-averaged Navier–Stokes (RANS) equations with the use of the program complex
ANSYS ⁄ CFX, ANSYS Inc. The equations of viscous-gas motion are numerically integrated using the finite-volume
method, a numerical scheme of high order with respect to time and space for convective and viscous terms, and an
improved two-parameter k–ω model of turbulence (Shear-Stress-Transport model) [10] that allows one to determine the
characteristics of turbulent near-wall viscous flows with separation and without separation with a high degree of accu-
racy and to simulate a turbulent recirculation flow in the separation zones.

The problem was solved in the following formulation. At the initial instant of time t0, a ring solid vortex of
radius R0 with a circulation Γ0 and a circular core of radius r0 is at a height H0 above the surface of a flat solid
screen (Fig. 1). Under the action of the self-induction, the ring vortex begins to move as a unit down to the screen.
As the initial velocity field, the nonviscous solution for a ring vortex [2] is used. In the ideal-fluid approximation, the
rate of self-induction V0 of a ring solid vortex with a small-radius core of circular cross section, i.e., the velocity of
travel of the center of mass of the vortex core along the symmetry axis, is estimated by the asymptotic formula [2]

V0 = Γ0 
ln (8R0

 ⁄ r0) − 0.25

4πR0
 .
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The characteristic Reynolds number of the problem is determined by the rate of self-induction of the vortex
and its diameter at the initial instant of time: Re = V0D0

 ⁄ ν. The core of the vortex represents a constant-vorticity re-
gion, and the vortex circulation Γ0 is determined as the product of the vorticity-vector module by the area of the cir-
cular cross section of the vortex core:

Γ0 = ω⋅4πr0
2
 .

The velocity of the fluid in the core changes along its radius by the linear law; at the center of the core, it is equal
to zero.

Thus, as the initial approximation (at the instant t0) for numerical integration of the Navier–Stokes equations,
the known solution obtained for an ideal (nonviscous) fluid is used.

The nonstationary Navier–Stokes equations defining the dynamics of the viscous interaction of a ring vortex
with a near-wall turbulent flow on a flat screen are solved in a computational region representing an axisymmetric sec-
tor with an angular opening of 5o, in which a nonstructured hybrid tetrahedral-prismatical grid containing 0.5 mln
nodes is generated. The algorithms and methods, used for construction and adaptation of irregular grids, as applied to
the two- and three-dimensional problems of mathematical physics and computational gas dynamics, are original devel-
opments of the author and are described in [11–14]. For representation of the turbulent axisymmetric near-wall flow
induced on the surface of the flat screen by the ring vortex moving to the screen with a required resolution, 15 grid
layers consisting of prismatic cells pressed against the surface of the screen and extended strongly along it were gen-
erated crosswise to the thin near-wall layer. To adequately describe the evolution of the primary ring vortex moving
to the screen in the process of its viscous interaction with the near-wall layer on the screen, as well as the formation
of the secondary ring vortices with circulations opposite in sign as a result of the separation at different instants of
time of the turbulent near-wall layer on the screen and their development, we generated a fairly fine grid, such that
many grid cells were in the core of a vortex (in the grid shown in Fig. 2, 60 triangular cells are positioned along the
diameter of the core).

Results of Calculations. The calculations were carried out with the ANSYS ⁄ CFX program complex on a
two-core personal computer with a Pentium-D processor, operating at 3.2 GHz, and an on-line storage of 4 GB, which
was controlled by a Linax SuSE10.0 ×86_64 operational system. The nonstationary Navier–Stokes equations were nu-
merically integrated in the computational region representing an axisymmeric sector with an angular opening of 5o, a
height of 1.5H0, and a length of 2.5H0 (in the radical direction in the cylindrical coordinate system), in which a non-
structured hybrid tetrahedral-prismatic grid containing 0.5 mln nodes was generated, and a triangular grid containing

Fig. 1. Geometry of a ring vortex near a flat screen at the initial instant of
time in the vertical diametrical plane of symmetry.

Fig. 2. Triangular grid in the first quadrant of the vertical symmetry plane of
the problem.
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Fig. 3. Distribution of the vorticity ω (the grey-colored gradations, from the
white to the black color correspond to the values of ω changing from −0.1
sec−1 to 0.15 sec−1 respectively) in the axial symmetry plane at Re = 105, r0
= 2.5 m, H0 = 10 m, R0 = 10 m (the size of each fragment along the horizon-
tal is 25 m) at different instants of time: t = 0 (a), 140 (b), 160 (c), 180 (d),
200 (e), 240 (f), 280 (g), 320 (h), 400 (i), and 440 sec (j).
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Fig. 4. Distribution of the vorticity ω (the grey-colored gradations, from the
white to the black color correspond to the values of ω changing from −10.0
sec−1 to 15.0 sec−1 respectively) in the axial symmetry plane at Re = 107, r0
= 2.5 m, H0 = 10 m, R0 = 10 m (the size of each fragment along the hori-
zontal is 25 m) at different instants of time: t = 0 (a), 1.25 (b), 1.50 (c), 1.75
(d), 2.00 (e), 2.25 (f), 2.50 (g), 2.75 (h), 3.00 (i), and 3.25 sec (j).
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46,500 nodes was generated in the axial-symmetry plane. The calculations were performed for a ring vortex with the
following geometric parameters: R0 = 10 m, H0 = 10 m, r0 = 0.1R0 and 0.25R0. The Reynolds numbers were changed
within the range Re = 105–107. The step of integration of the equations of motion with respect to time was selected
on the basis of a numerical experiment; its dimensionless value, determined from the expression ∆t1 = ∆tΓ0

 ⁄ R0
2, was

equal to 0.022, which corresponds to the dimensional time steps ∆t = 1.0 sec for the flow at Re = 105 and ∆t = 0.01
sec for the flow at Re = 107. The time of evolution of the ring vortex, determined numerically, comprised t1 = 11 in
the dimensionless form or, in the dimensional form, t = 500 sec at Re = 105 and t = 5 sec at Re = 107; for this time,
the primary ring vortex reached the boundary of the computational region and was dissipated. A calculation of one

Fig. 5. Distribution of the vorticity ω (the grey-colored gradations, from the
white to the black color, correspond to the values of ω changing from −25.0
sec−1 to 40.0 sec−1 respectively) in the axial symmetry plane at Re = 107, r0
= 1.0 m, H0 = 10 m, R0 = 10 m (the size of each fragment along the hori-
zontal is 25 m) at different instants of time: t = 0 (a), 1.1 (b), 1.3 (c), 1.4 (d),
1.5 (e), 1.7 (f), 2.0 (g), and 2.5 (h).

200



variant of evolution of a ring vortex and the dynamics of its interaction with the turbulent neat-wall flow on the solid
screen with the use of a two-core personal computer took 10–12 h.

In Figs. 3–5, patterns of the viscous interaction of a ring vortex with the turbulent near-wall layer on the
screen, obtained for different instants of time, and patterns of formation and interference of the secondary ring vortices
with the primary vortex in the form of vorticity fields, calculated for the characteristic Reynolds numbers Re = 105

and 107 and two values of the initial radius of the vortex core r0 = 0.25R0 and 0.1R0, are presented in the first quad-
rant of the vertical symmetry plane of the problem. The vorticity vector at each computational point was calculated by
the formula ω = rot V. The grey background in the figures corresponds to the zone of flow without separation, the
black-colored regions correspond to the primary ring vortex, and the local white-colored regions correspond to the sec-
ondary ring vortices with vorticities opposite in sign.

These patterns clearly represent the dynamics of interaction of the primary ring vortex with the flat solid
screen in the process of its movement to the screen and propagation along the screen plane in the direction from the

Fig. 6. Results of experimental investigations of the movement of a ring vortex
near a flat screen under the laminar-flow conditions (Re = 930, the size of
each fragment along the horizontal is 0.088 m) at different instants of time: t
= 1.20 (a), 1.40 (b), 1.70 (c), 1.80 (d), 2.00 (e), 2.67 (f), and 3.80 (g).
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symmetry axis. As the vortex approaches the screen, its circular core (black-colored circle) initially changes its shape
and arranges itself into an ellipse with the major axis directed parallel to the screen (the core of the vortex is extended
along the screen). At the same time, the ring vortex moving to the screen stimulates the formulation of a nonstationary
flow on the screen surface due to the formation of a turbulent axisymmetric near-wall layer. This near-wall layer
grows ("swells") in the initial period of its formation; then the negative pressure gradient arising along the radius of
the core changes to positive and there arise preseparation conditions where the region of the "swollen" boundary layer
is extended in the vertical direction and forms a topology in the form of a drop "on a knife." Finally, the near-wall
layer separates with formation of a series of secondary ring vortices with vorticities opposite in sign (local white-col-
ored zones in the figures). Initially the secondary vortex is "coiled" on the core of the primary vortex that continues
to move slowly along the screen in the direction from the symmetry axis; then this vortex separates, moves up to the
symmetry axis, and, in doing so, runs ahead of the core of the primary vortex. It is clearly seen from Fig. 4 that sev-
eral secondary vortices are generated at successive instants of time and a configuration of three secondary ring vortices
is formed. In this case, the whole system of primary and secondary ring vortices slows down its motion along the
screen and moves slowly up. With time, a viscous diffusion of the primary and secondary ring vortices is realized, the
vortex system dissociates gradually, and the flow decays.

Conclusions. The results of our numerical calculations of the nonstationary viscous interaction of primary and
secondary ring vortices near a flat screen and the flow patterns obtained agree qualitatively with the data obtained in
[1] with the use of the discrete-vortex method and the boundary-layer theory as well as with the results of laboratory
experimental investigations of the interaction of a ring vortex with a screen, obtained for laminar-flow conditions at
small Reynolds numbers (see, e.g., Fig. 6 taken from [4]).

The author expresses her thanks to A. S. Ginevskii for interest in the numerical investigation of the problem
considered, scientific support, and discussion of the results obtained.

NOTATION

D0, diameter of a ring vortex at the initial instant of time, m; H0, height of the vortex ring above a flat
screen at the initial instant of time, m; r, coordinate axis of the cylindrical coordinate system directed along the radius
of the vortex core; r0, radius of the core of the ring solid vortex at the initial instant of time, m; R0, radius of the
ring vortex at the initial instant of time, m; Re = V0D0

 ⁄ ν, characteristic Reynolds number; t, time, sec; t1, dimension-
less time; t0, initial instant of time, sec; ∆t, step of integration with respect to time, sec; ∆t1, dimensionless step of
integration with respect to time; V0, self-induced velocity of travel of the center of mass of the ring solid vortex along
the vertical symmetry axis at the initial instant of time, m ⁄ sec; V, velocity vector of a flow, m ⁄ sec; y, coordinate axis
of the cylindrical coordinate system directed vertically up; Γ0, circulation of the ring vortex, m2 ⁄ sec; ν, kinematic vis-
cosity coefficient of air, m2 ⁄ sec; ω, vorticity vector, sec−1.
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